Integrale di $$$\frac{a c \rho v^{2}}{2}$$$ rispetto a $$$v$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{a c \rho v^{2}}{2}\, dv$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{a c \rho}{2}$$$ e $$$f{\left(v \right)} = v^{2}$$$:
$${\color{red}{\int{\frac{a c \rho v^{2}}{2} d v}}} = {\color{red}{\left(\frac{a c \rho \int{v^{2} d v}}{2}\right)}}$$
Applica la regola della potenza $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$\frac{a c \rho {\color{red}{\int{v^{2} d v}}}}{2}=\frac{a c \rho {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{a c \rho {\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$
Pertanto,
$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}$$
Aggiungi la costante di integrazione:
$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}+C$$
Risposta
$$$\int \frac{a c \rho v^{2}}{2}\, dv = \frac{a c \rho v^{3}}{6} + C$$$A