Integraal van $$$\frac{1}{\left(x - 1\right)^{2}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{\left(x - 1\right)^{2}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx$$$.

Oplossing

Zij $$$u=x - 1$$$.

Dan $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:

$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$

We herinneren eraan dat $$$u=x - 1$$$:

$$- {\color{red}{u}}^{-1} = - {\color{red}{\left(x - 1\right)}}^{-1}$$

Dus,

$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}+C$$

Antwoord

$$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx = - \frac{1}{x - 1} + C$$$A


Please try a new game Rotatly