$$$\frac{1}{\left(x - 1\right)^{2}}$$$ 的积分
您的输入
求$$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx$$$。
解答
设$$$u=x - 1$$$。
则$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
回忆一下 $$$u=x - 1$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\left(x - 1\right)}}^{-1}$$
因此,
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}$$
加上积分常数:
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}+C$$
答案
$$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx = - \frac{1}{x - 1} + C$$$A