Integral de $$$\frac{1}{\left(x - 1\right)^{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx$$$.
Solución
Sea $$$u=x - 1$$$.
Entonces $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.
La integral se convierte en
$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
Recordemos que $$$u=x - 1$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\left(x - 1\right)}}^{-1}$$
Por lo tanto,
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}$$
Añade la constante de integración:
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} = - \frac{1}{x - 1}+C$$
Respuesta
$$$\int \frac{1}{\left(x - 1\right)^{2}}\, dx = - \frac{1}{x - 1} + C$$$A