Integraal van $$$\ln\left(u\right)$$$

De calculator zal de integraal/primitieve functie van $$$\ln\left(u\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \ln\left(u\right)\, du$$$.

Oplossing

Voor de integraal $$$\int{\ln{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.

Zij $$$\operatorname{\omega}=\ln{\left(u \right)}$$$ en $$$\operatorname{dv}=du$$$.

Dan $$$\operatorname{d\omega}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d u}=u$$$ (de stappen zijn te zien »).

Dus,

$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$

Dus,

$$\int{\ln{\left(u \right)} d u} = u \ln{\left(u \right)} - u$$

Vereenvoudig:

$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)$$

Voeg de integratieconstante toe:

$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)+C$$

Antwoord

$$$\int \ln\left(u\right)\, du = u \left(\ln\left(u\right) - 1\right) + C$$$A


Please try a new game Rotatly