$$$\ln\left(u\right)$$$ 的积分

该计算器将求出$$$\ln\left(u\right)$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \ln\left(u\right)\, du$$$

解答

对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$

$$$\operatorname{\omega}=\ln{\left(u \right)}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{d\omega}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。

该积分可以改写为

$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$

因此,

$$\int{\ln{\left(u \right)} d u} = u \ln{\left(u \right)} - u$$

化简:

$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)$$

加上积分常数:

$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)+C$$

答案

$$$\int \ln\left(u\right)\, du = u \left(\ln\left(u\right) - 1\right) + C$$$A


Please try a new game Rotatly