Integraal van $$$e^{\sqrt{x}}$$$

De calculator zal de integraal/primitieve functie van $$$e^{\sqrt{x}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int e^{\sqrt{x}}\, dx$$$.

Oplossing

Zij $$$u=\sqrt{x}$$$.

Dan $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Dus,

$${\color{red}{\int{e^{\sqrt{x}} d x}}} = {\color{red}{\int{2 u e^{u} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = u e^{u}$$$:

$${\color{red}{\int{2 u e^{u} d u}}} = {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$

Voor de integraal $$$\int{u e^{u} d u}$$$, gebruik partiële integratie $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Zij $$$\operatorname{m}=u$$$ en $$$\operatorname{dv}=e^{u} du$$$.

Dan $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (de stappen zijn te zien »).

De integraal wordt

$$2 {\color{red}{\int{u e^{u} d u}}}=2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$

De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:

$$2 u e^{u} - 2 {\color{red}{\int{e^{u} d u}}} = 2 u e^{u} - 2 {\color{red}{e^{u}}}$$

We herinneren eraan dat $$$u=\sqrt{x}$$$:

$$- 2 e^{{\color{red}{u}}} + 2 {\color{red}{u}} e^{{\color{red}{u}}} = - 2 e^{{\color{red}{\sqrt{x}}}} + 2 {\color{red}{\sqrt{x}}} e^{{\color{red}{\sqrt{x}}}}$$

Dus,

$$\int{e^{\sqrt{x}} d x} = 2 \sqrt{x} e^{\sqrt{x}} - 2 e^{\sqrt{x}}$$

Vereenvoudig:

$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}$$

Voeg de integratieconstante toe:

$$\int{e^{\sqrt{x}} d x} = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}+C$$

Antwoord

$$$\int e^{\sqrt{x}}\, dx = 2 \left(\sqrt{x} - 1\right) e^{\sqrt{x}} + C$$$A


Please try a new game Rotatly