Integraal van $$$e^{- 2 t} \sin{\left(4 t \right)}$$$

De calculator zal de integraal/primitieve functie van $$$e^{- 2 t} \sin{\left(4 t \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int e^{- 2 t} \sin{\left(4 t \right)}\, dt$$$.

Oplossing

Voor de integraal $$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\sin{\left(4 t \right)}$$$ en $$$\operatorname{dv}=e^{- 2 t} dt$$$.

Dan $$$\operatorname{du}=\left(\sin{\left(4 t \right)}\right)^{\prime }dt=4 \cos{\left(4 t \right)} dt$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{- 2 t} d t}=- \frac{e^{- 2 t}}{2}$$$ (de stappen zijn te zien »).

Dus,

$${\color{red}{\int{e^{- 2 t} \sin{\left(4 t \right)} d t}}}={\color{red}{\left(\sin{\left(4 t \right)} \cdot \left(- \frac{e^{- 2 t}}{2}\right)-\int{\left(- \frac{e^{- 2 t}}{2}\right) \cdot 4 \cos{\left(4 t \right)} d t}\right)}}={\color{red}{\left(- \int{\left(- 2 e^{- 2 t} \cos{\left(4 t \right)}\right)d t} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=-2$$$ en $$$f{\left(t \right)} = e^{- 2 t} \cos{\left(4 t \right)}$$$:

$$- {\color{red}{\int{\left(- 2 e^{- 2 t} \cos{\left(4 t \right)}\right)d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} = - {\color{red}{\left(- 2 \int{e^{- 2 t} \cos{\left(4 t \right)} d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}$$

Voor de integraal $$$\int{e^{- 2 t} \cos{\left(4 t \right)} d t}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\cos{\left(4 t \right)}$$$ en $$$\operatorname{dv}=e^{- 2 t} dt$$$.

Dan $$$\operatorname{du}=\left(\cos{\left(4 t \right)}\right)^{\prime }dt=- 4 \sin{\left(4 t \right)} dt$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{- 2 t} d t}=- \frac{e^{- 2 t}}{2}$$$ (de stappen zijn te zien »).

De integraal wordt

$$2 {\color{red}{\int{e^{- 2 t} \cos{\left(4 t \right)} d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}=2 {\color{red}{\left(\cos{\left(4 t \right)} \cdot \left(- \frac{e^{- 2 t}}{2}\right)-\int{\left(- \frac{e^{- 2 t}}{2}\right) \cdot \left(- 4 \sin{\left(4 t \right)}\right) d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}=2 {\color{red}{\left(- \int{2 e^{- 2 t} \sin{\left(4 t \right)} d t} - \frac{e^{- 2 t} \cos{\left(4 t \right)}}{2}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=2$$$ en $$$f{\left(t \right)} = e^{- 2 t} \sin{\left(4 t \right)}$$$:

$$- 2 {\color{red}{\int{2 e^{- 2 t} \sin{\left(4 t \right)} d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)} = - 2 {\color{red}{\left(2 \int{e^{- 2 t} \sin{\left(4 t \right)} d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)}$$

We zijn uitgekomen bij een integraal die we al eerder hebben gezien.

Dus hebben we de volgende eenvoudige vergelijking voor de integraal verkregen:

$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = - 4 \int{e^{- 2 t} \sin{\left(4 t \right)} d t} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)}$$

Door het op te lossen, krijgen we dat

$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}$$

Dus,

$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}$$

Voeg de integratieconstante toe:

$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}+C$$

Antwoord

$$$\int e^{- 2 t} \sin{\left(4 t \right)}\, dt = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10} + C$$$A


Please try a new game Rotatly