Integralen av $$$e^{- 2 t} \sin{\left(4 t \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int e^{- 2 t} \sin{\left(4 t \right)}\, dt$$$.
Lösning
För integralen $$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\sin{\left(4 t \right)}$$$ och $$$\operatorname{dv}=e^{- 2 t} dt$$$.
Då gäller $$$\operatorname{du}=\left(\sin{\left(4 t \right)}\right)^{\prime }dt=4 \cos{\left(4 t \right)} dt$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{- 2 t} d t}=- \frac{e^{- 2 t}}{2}$$$ (stegen kan ses »).
Integralen blir
$${\color{red}{\int{e^{- 2 t} \sin{\left(4 t \right)} d t}}}={\color{red}{\left(\sin{\left(4 t \right)} \cdot \left(- \frac{e^{- 2 t}}{2}\right)-\int{\left(- \frac{e^{- 2 t}}{2}\right) \cdot 4 \cos{\left(4 t \right)} d t}\right)}}={\color{red}{\left(- \int{\left(- 2 e^{- 2 t} \cos{\left(4 t \right)}\right)d t} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=-2$$$ och $$$f{\left(t \right)} = e^{- 2 t} \cos{\left(4 t \right)}$$$:
$$- {\color{red}{\int{\left(- 2 e^{- 2 t} \cos{\left(4 t \right)}\right)d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} = - {\color{red}{\left(- 2 \int{e^{- 2 t} \cos{\left(4 t \right)} d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}$$
För integralen $$$\int{e^{- 2 t} \cos{\left(4 t \right)} d t}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\cos{\left(4 t \right)}$$$ och $$$\operatorname{dv}=e^{- 2 t} dt$$$.
Då gäller $$$\operatorname{du}=\left(\cos{\left(4 t \right)}\right)^{\prime }dt=- 4 \sin{\left(4 t \right)} dt$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{- 2 t} d t}=- \frac{e^{- 2 t}}{2}$$$ (stegen kan ses »).
Integralen kan omskrivas som
$$2 {\color{red}{\int{e^{- 2 t} \cos{\left(4 t \right)} d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}=2 {\color{red}{\left(\cos{\left(4 t \right)} \cdot \left(- \frac{e^{- 2 t}}{2}\right)-\int{\left(- \frac{e^{- 2 t}}{2}\right) \cdot \left(- 4 \sin{\left(4 t \right)}\right) d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}=2 {\color{red}{\left(- \int{2 e^{- 2 t} \sin{\left(4 t \right)} d t} - \frac{e^{- 2 t} \cos{\left(4 t \right)}}{2}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=2$$$ och $$$f{\left(t \right)} = e^{- 2 t} \sin{\left(4 t \right)}$$$:
$$- 2 {\color{red}{\int{2 e^{- 2 t} \sin{\left(4 t \right)} d t}}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)} = - 2 {\color{red}{\left(2 \int{e^{- 2 t} \sin{\left(4 t \right)} d t}\right)}} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)}$$
Vi har kommit till en integral som vi redan har sett.
Således har vi erhållit följande enkla ekvation med avseende på integralen:
$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = - 4 \int{e^{- 2 t} \sin{\left(4 t \right)} d t} - \frac{e^{- 2 t} \sin{\left(4 t \right)}}{2} - e^{- 2 t} \cos{\left(4 t \right)}$$
Löser vi den får vi att
$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}$$
Alltså,
$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}$$
Lägg till integrationskonstanten:
$$\int{e^{- 2 t} \sin{\left(4 t \right)} d t} = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10}+C$$
Svar
$$$\int e^{- 2 t} \sin{\left(4 t \right)}\, dt = \frac{\left(- \sin{\left(4 t \right)} - 2 \cos{\left(4 t \right)}\right) e^{- 2 t}}{10} + C$$$A