Integraal van $$$\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Oplossing
Vereenvoudig de integraand:
$${\color{red}{\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}}$$
Integreer termgewijs:
$${\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{x}}$$
Herschrijf de integraand in termen van de cosecans:
$$- x + {\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$
De integraal van $$$\csc^{2}{\left(x \right)}$$$ is $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Dus,
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}+C$$
Antwoord
$$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A