Integral de $$$\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Solución
Simplificar el integrando:
$${\color{red}{\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}}$$
Integra término a término:
$${\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{x}}$$
Reescribe el integrando en términos de la cosecante:
$$- x + {\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$
La integral de $$$\csc^{2}{\left(x \right)}$$$ es $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Por lo tanto,
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}$$
Añade la constante de integración:
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}+C$$
Respuesta
$$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A