Integral dari $$$\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Solusi
Sederhanakan integran:
$${\color{red}{\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{x}}$$
Tulis ulang integran dalam bentuk kosekan:
$$- x + {\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$
Integral dari $$$\csc^{2}{\left(x \right)}$$$ adalah $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Oleh karena itu,
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}+C$$
Jawaban
$$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A