$$$\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$ を求めよ。
解答
被積分関数を簡単化する:
$${\color{red}{\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(-1 + \frac{1}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\sin^{2}{\left(x \right)}} d x} - {\color{red}{x}}$$
被積分関数を余割関数を用いて書き換えなさい:
$$- x + {\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$
$$$\csc^{2}{\left(x \right)}$$$ の不定積分は $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$ です:
$$- x + {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
したがって、
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}$$
積分定数を加える:
$$\int{\frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}} d x} = - x - \cot{\left(x \right)}+C$$
解答
$$$\int \frac{\cos{\left(x \right)} \cot{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(- x - \cot{\left(x \right)}\right) + C$$$A