Integraal van $$$\cos^{2}{\left(t \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cos^{2}{\left(t \right)}\, dt$$$.
Oplossing
Pas de machtsreductieformule $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ toe met $$$\alpha=t$$$:
$${\color{red}{\int{\cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)d t}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(t \right)} = \cos{\left(2 t \right)} + 1$$$:
$${\color{red}{\int{\left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 t \right)} + 1\right)d t}}{2}\right)}}$$
Integreer termgewijs:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 t \right)} + 1\right)d t}}}}{2} = \frac{{\color{red}{\left(\int{1 d t} + \int{\cos{\left(2 t \right)} d t}\right)}}}{2}$$
Pas de constantenregel $$$\int c\, dt = c t$$$ toe met $$$c=1$$$:
$$\frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{\int{1 d t}}}}{2} = \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{t}}}{2}$$
Zij $$$u=2 t$$$.
Dan $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (de stappen zijn te zien »), en dan geldt dat $$$dt = \frac{du}{2}$$$.
De integraal wordt
$$\frac{t}{2} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{t}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{t}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{t}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
We herinneren eraan dat $$$u=2 t$$$:
$$\frac{t}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{t}{2} + \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{4}$$
Dus,
$$\int{\cos^{2}{\left(t \right)} d t} = \frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}$$
Voeg de integratieconstante toe:
$$\int{\cos^{2}{\left(t \right)} d t} = \frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}+C$$
Antwoord
$$$\int \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}\right) + C$$$A