$$$\cos^{2}{\left(t \right)}$$$の積分
入力内容
$$$\int \cos^{2}{\left(t \right)}\, dt$$$ を求めよ。
解答
冪低減公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ を $$$\alpha=t$$$ に適用する:
$${\color{red}{\int{\cos^{2}{\left(t \right)} d t}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)d t}}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(t \right)} = \cos{\left(2 t \right)} + 1$$$ に対して適用する:
$${\color{red}{\int{\left(\frac{\cos{\left(2 t \right)}}{2} + \frac{1}{2}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 t \right)} + 1\right)d t}}{2}\right)}}$$
項別に積分せよ:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 t \right)} + 1\right)d t}}}}{2} = \frac{{\color{red}{\left(\int{1 d t} + \int{\cos{\left(2 t \right)} d t}\right)}}}{2}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dt = c t$$$ を適用する:
$$\frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{\int{1 d t}}}}{2} = \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{t}}}{2}$$
$$$u=2 t$$$ とする。
すると $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$(手順は»で確認できます)、$$$dt = \frac{du}{2}$$$ となります。
したがって、
$$\frac{t}{2} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$\frac{t}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{t}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{t}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{t}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
次のことを思い出してください $$$u=2 t$$$:
$$\frac{t}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{t}{2} + \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{4}$$
したがって、
$$\int{\cos^{2}{\left(t \right)} d t} = \frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}$$
積分定数を加える:
$$\int{\cos^{2}{\left(t \right)} d t} = \frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}+C$$
解答
$$$\int \cos^{2}{\left(t \right)}\, dt = \left(\frac{t}{2} + \frac{\sin{\left(2 t \right)}}{4}\right) + C$$$A