Integraal van $$$\frac{75}{u^{3}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{75}{u^{3}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{75}{u^{3}}\, du$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=75$$$ en $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:

$${\color{red}{\int{\frac{75}{u^{3}} d u}}} = {\color{red}{\left(75 \int{\frac{1}{u^{3}} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-3$$$:

$$75 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=75 {\color{red}{\int{u^{-3} d u}}}=75 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=75 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=75 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

Dus,

$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}$$

Voeg de integratieconstante toe:

$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}+C$$

Antwoord

$$$\int \frac{75}{u^{3}}\, du = - \frac{75}{2 u^{2}} + C$$$A


Please try a new game Rotatly