Integral of $$$\frac{75}{u^{3}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{75}{u^{3}}\, du$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=75$$$ and $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:
$${\color{red}{\int{\frac{75}{u^{3}} d u}}} = {\color{red}{\left(75 \int{\frac{1}{u^{3}} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-3$$$:
$$75 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=75 {\color{red}{\int{u^{-3} d u}}}=75 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=75 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=75 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Therefore,
$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}$$
Add the constant of integration:
$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}+C$$
Answer
$$$\int \frac{75}{u^{3}}\, du = - \frac{75}{2 u^{2}} + C$$$A