$$$\frac{75}{u^{3}}$$$ 的積分

此計算器將求出 $$$\frac{75}{u^{3}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{75}{u^{3}}\, du$$$

解答

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=75$$$$$$f{\left(u \right)} = \frac{1}{u^{3}}$$$

$${\color{red}{\int{\frac{75}{u^{3}} d u}}} = {\color{red}{\left(75 \int{\frac{1}{u^{3}} d u}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$

$$75 {\color{red}{\int{\frac{1}{u^{3}} d u}}}=75 {\color{red}{\int{u^{-3} d u}}}=75 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=75 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=75 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

因此,

$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}$$

加上積分常數:

$$\int{\frac{75}{u^{3}} d u} = - \frac{75}{2 u^{2}}+C$$

答案

$$$\int \frac{75}{u^{3}}\, du = - \frac{75}{2 u^{2}} + C$$$A


Please try a new game Rotatly