Integraal van $$$\frac{1}{\sqrt{- x^{2} + x}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{\sqrt{- x^{2} + x}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx$$$.

Oplossing

Voltooi het kwadraat (stappen zijn te zien »): $$$- x^{2} + x = \frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{- x^{2} + x}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}}$$

Zij $$$u=x - \frac{1}{2}$$$.

Dan $$$du=\left(x - \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}}$$

Zij $$$u=\frac{\sin{\left(v \right)}}{2}$$$.

Dan $$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$ (zie » voor de stappen).

Bovendien volgt dat $$$v=\operatorname{asin}{\left(2 u \right)}$$$.

Dus,

$$$\frac{1}{\sqrt{\frac{1}{4} - u ^{2}}} = \frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}$$$

Gebruik de identiteit $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:

$$$\frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}=\frac{2}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}}$$$

Aangenomen dat $$$\cos{\left( v \right)} \ge 0$$$, verkrijgen we het volgende:

$$$\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{2}{\cos{\left( v \right)}}$$$

De integraal wordt

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}} = {\color{red}{\int{1 d v}}}$$

Pas de constantenregel $$$\int c\, dv = c v$$$ toe met $$$c=1$$$:

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

We herinneren eraan dat $$$v=\operatorname{asin}{\left(2 u \right)}$$$:

$${\color{red}{v}} = {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$

We herinneren eraan dat $$$u=x - \frac{1}{2}$$$:

$$\operatorname{asin}{\left(2 {\color{red}{u}} \right)} = \operatorname{asin}{\left(2 {\color{red}{\left(x - \frac{1}{2}\right)}} \right)}$$

Dus,

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}+C$$

Antwoord

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx = \operatorname{asin}{\left(2 x - 1 \right)} + C$$$A


Please try a new game Rotatly