$$$\frac{1}{\sqrt{- x^{2} + x}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\sqrt{- x^{2} + x}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx$$$

解答

配方法 (步驟見 »): $$$- x^{2} + x = \frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{- x^{2} + x}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}}$$

$$$u=x - \frac{1}{2}$$$

$$$du=\left(x - \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分變為

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}}$$

$$$u=\frac{\sin{\left(v \right)}}{2}$$$

$$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$(步驟見»)。

此外,由此可得 $$$v=\operatorname{asin}{\left(2 u \right)}$$$

因此,

$$$\frac{1}{\sqrt{\frac{1}{4} - u ^{2}}} = \frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}$$$

使用恆等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$

$$$\frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}=\frac{2}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}}$$$

假設 $$$\cos{\left( v \right)} \ge 0$$$,可得如下:

$$$\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{2}{\cos{\left( v \right)}}$$$

所以,

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}} = {\color{red}{\int{1 d v}}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

回顧一下 $$$v=\operatorname{asin}{\left(2 u \right)}$$$

$${\color{red}{v}} = {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$

回顧一下 $$$u=x - \frac{1}{2}$$$

$$\operatorname{asin}{\left(2 {\color{red}{u}} \right)} = \operatorname{asin}{\left(2 {\color{red}{\left(x - \frac{1}{2}\right)}} \right)}$$

因此,

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}$$

加上積分常數:

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}+C$$

答案

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx = \operatorname{asin}{\left(2 x - 1 \right)} + C$$$A


Please try a new game Rotatly