$$$\frac{1}{\sqrt{- x^{2} + x}}$$$ 的积分

该计算器将求出$$$\frac{1}{\sqrt{- x^{2} + x}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx$$$

解答

配平方(步骤见»):$$$- x^{2} + x = \frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{- x^{2} + x}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}}$$

$$$u=x - \frac{1}{2}$$$

$$$du=\left(x - \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

该积分可以改写为

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}}$$

$$$u=\frac{\sin{\left(v \right)}}{2}$$$

$$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$(步骤见»)。

此外,可得$$$v=\operatorname{asin}{\left(2 u \right)}$$$

所以,

$$$\frac{1}{\sqrt{\frac{1}{4} - u ^{2}}} = \frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}$$$

利用恒等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$

$$$\frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}=\frac{2}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}}$$$

假设$$$\cos{\left( v \right)} \ge 0$$$,我们得到如下结果:

$$$\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{2}{\cos{\left( v \right)}}$$$

因此,

$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}} = {\color{red}{\int{1 d v}}}$$

应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$

$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$

回忆一下 $$$v=\operatorname{asin}{\left(2 u \right)}$$$:

$${\color{red}{v}} = {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$

回忆一下 $$$u=x - \frac{1}{2}$$$:

$$\operatorname{asin}{\left(2 {\color{red}{u}} \right)} = \operatorname{asin}{\left(2 {\color{red}{\left(x - \frac{1}{2}\right)}} \right)}$$

因此,

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}$$

加上积分常数:

$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}+C$$

答案

$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx = \operatorname{asin}{\left(2 x - 1 \right)} + C$$$A


Please try a new game Rotatly