$$$\frac{1}{\sqrt{- x^{2} + x}}$$$ 的积分
您的输入
求$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx$$$。
解答
配平方(步骤见»):$$$- x^{2} + x = \frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{- x^{2} + x}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}}$$
设$$$u=x - \frac{1}{2}$$$。
则$$$du=\left(x - \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
该积分可以改写为
$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}}$$
设$$$u=\frac{\sin{\left(v \right)}}{2}$$$。
则$$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$(步骤见»)。
此外,可得$$$v=\operatorname{asin}{\left(2 u \right)}$$$。
所以,
$$$\frac{1}{\sqrt{\frac{1}{4} - u ^{2}}} = \frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}$$$
利用恒等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:
$$$\frac{1}{\sqrt{\frac{1}{4} - \frac{\sin^{2}{\left( v \right)}}{4}}}=\frac{2}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}}$$$
假设$$$\cos{\left( v \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{2}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{2}{\cos{\left( v \right)}}$$$
因此,
$${\color{red}{\int{\frac{1}{\sqrt{\frac{1}{4} - u^{2}}} d u}}} = {\color{red}{\int{1 d v}}}$$
应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$:
$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$
回忆一下 $$$v=\operatorname{asin}{\left(2 u \right)}$$$:
$${\color{red}{v}} = {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$
回忆一下 $$$u=x - \frac{1}{2}$$$:
$$\operatorname{asin}{\left(2 {\color{red}{u}} \right)} = \operatorname{asin}{\left(2 {\color{red}{\left(x - \frac{1}{2}\right)}} \right)}$$
因此,
$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}$$
加上积分常数:
$$\int{\frac{1}{\sqrt{- x^{2} + x}} d x} = \operatorname{asin}{\left(2 x - 1 \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{- x^{2} + x}}\, dx = \operatorname{asin}{\left(2 x - 1 \right)} + C$$$A