Integraal van $$$- \frac{1}{\sqrt{1 - x^{2}}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(- \frac{1}{\sqrt{1 - x^{2}}}\right)\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=-1$$$ en $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{1 - x^{2}}} d x}\right)}}$$
De integraal van $$$\frac{1}{\sqrt{1 - x^{2}}}$$$ is $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$$- {\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}} = - {\color{red}{\operatorname{asin}{\left(x \right)}}}$$
Dus,
$$\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x} = - \operatorname{asin}{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x} = - \operatorname{asin}{\left(x \right)}+C$$
Antwoord
$$$\int \left(- \frac{1}{\sqrt{1 - x^{2}}}\right)\, dx = - \operatorname{asin}{\left(x \right)} + C$$$A