Ολοκλήρωμα του $$$- \frac{1}{\sqrt{1 - x^{2}}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- \frac{1}{\sqrt{1 - x^{2}}}\right)\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-1$$$ και $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{1 - x^{2}}} d x}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{\sqrt{1 - x^{2}}}$$$ είναι $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$$- {\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}} = - {\color{red}{\operatorname{asin}{\left(x \right)}}}$$
Επομένως,
$$\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x} = - \operatorname{asin}{\left(x \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)d x} = - \operatorname{asin}{\left(x \right)}+C$$
Απάντηση
$$$\int \left(- \frac{1}{\sqrt{1 - x^{2}}}\right)\, dx = - \operatorname{asin}{\left(x \right)} + C$$$A