Integraal van $$$- \frac{\cos{\left(4 x \right)}}{4}$$$

De calculator zal de integraal/primitieve functie van $$$- \frac{\cos{\left(4 x \right)}}{4}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=- \frac{1}{4}$$$ en $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:

$${\color{red}{\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(4 x \right)} d x}}{4}\right)}}$$

Zij $$$u=4 x$$$.

Dan $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{4}$$$.

Dus,

$$- \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{4} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{4}$$

De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$

We herinneren eraan dat $$$u=4 x$$$:

$$- \frac{\sin{\left({\color{red}{u}} \right)}}{16} = - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{16}$$

Dus,

$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}$$

Voeg de integratieconstante toe:

$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}+C$$

Antwoord

$$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx = - \frac{\sin{\left(4 x \right)}}{16} + C$$$A


Please try a new game Rotatly