Integralen av $$$- \frac{\cos{\left(4 x \right)}}{4}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=- \frac{1}{4}$$$ och $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(4 x \right)} d x}}{4}\right)}}$$
Låt $$$u=4 x$$$ vara.
Då $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{4}$$$.
Integralen kan omskrivas som
$$- \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{4} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{4}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{4}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$
Kom ihåg att $$$u=4 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{16} = - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{16}$$
Alltså,
$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}$$
Lägg till integrationskonstanten:
$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}+C$$
Svar
$$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx = - \frac{\sin{\left(4 x \right)}}{16} + C$$$A