Integral of $$$- \frac{\cos{\left(4 x \right)}}{4}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \frac{1}{4}$$$ and $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(4 x \right)} d x}}{4}\right)}}$$
Let $$$u=4 x$$$.
Then $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{4}$$$.
So,
$$- \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{4} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{4} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{4}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{16}$$
Recall that $$$u=4 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{16} = - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{16}$$
Therefore,
$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}$$
Add the constant of integration:
$$\int{\left(- \frac{\cos{\left(4 x \right)}}{4}\right)d x} = - \frac{\sin{\left(4 x \right)}}{16}+C$$
Answer
$$$\int \left(- \frac{\cos{\left(4 x \right)}}{4}\right)\, dx = - \frac{\sin{\left(4 x \right)}}{16} + C$$$A