Integraal van $$$- \frac{1}{u}$$$

De calculator zal de integraal/primitieve functie van $$$- \frac{1}{u}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- \frac{1}{u}\right)\, du$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Dus,

$$\int{\left(- \frac{1}{u}\right)d u} = - \ln{\left(\left|{u}\right| \right)}$$

Voeg de integratieconstante toe:

$$\int{\left(- \frac{1}{u}\right)d u} = - \ln{\left(\left|{u}\right| \right)}+C$$

Antwoord

$$$\int \left(- \frac{1}{u}\right)\, du = - \ln\left(\left|{u}\right|\right) + C$$$A


Please try a new game Rotatly