$$$x$$$에 대한 $$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx$$$을(를) 구하시오.
풀이
멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$를 $$$\alpha=\frac{\pi x}{l}$$$에 적용하세요:
$${\color{red}{\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)$$$에 적용하세요:
$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}\right)}}}{2}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=i n t$$$에 적용하십시오:
$$- \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{\int{i n t d x}}}}{2} = - \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{i n t x}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=i n t$$$와 $$$f{\left(x \right)} = \cos{\left(\frac{2 \pi x}{l} \right)}$$$에 적용하세요:
$$\frac{i n t x}{2} - \frac{{\color{red}{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{{\color{red}{i n t \int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2}$$
$$$u=\frac{2 \pi x}{l}$$$라 하자.
그러면 $$$du=\left(\frac{2 \pi x}{l}\right)^{\prime }dx = \frac{2 \pi}{l} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{l du}{2 \pi}$$$임을 얻습니다.
따라서,
$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{l}{2 \pi}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\left(\frac{l \int{\cos{\left(u \right)} d u}}{2 \pi}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{i l n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t {\color{red}{\sin{\left(u \right)}}}}{4 \pi} + \frac{i n t x}{2}$$
다음 $$$u=\frac{2 \pi x}{l}$$$을 기억하라:
$$- \frac{i l n t \sin{\left({\color{red}{u}} \right)}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t \sin{\left({\color{red}{\left(\frac{2 \pi x}{l}\right)}} \right)}}{4 \pi} + \frac{i n t x}{2}$$
따라서,
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = - \frac{i l n t \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{i n t x}{2}$$
간단히 하시오:
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}$$
적분 상수를 추가하세요:
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}+C$$
정답
$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi} + C$$$A