$$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx$$$。
解答
应用降幂公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,并令 $$$\alpha=\frac{\pi x}{l}$$$:
$${\color{red}{\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}\right)}}}{2}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=i n t$$$:
$$- \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{\int{i n t d x}}}}{2} = - \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{i n t x}}}{2}$$
对 $$$c=i n t$$$ 和 $$$f{\left(x \right)} = \cos{\left(\frac{2 \pi x}{l} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{i n t x}{2} - \frac{{\color{red}{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{{\color{red}{i n t \int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2}$$
设$$$u=\frac{2 \pi x}{l}$$$。
则$$$du=\left(\frac{2 \pi x}{l}\right)^{\prime }dx = \frac{2 \pi}{l} dx$$$ (步骤见»),并有$$$dx = \frac{l du}{2 \pi}$$$。
因此,
$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2}$$
对 $$$c=\frac{l}{2 \pi}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\left(\frac{l \int{\cos{\left(u \right)} d u}}{2 \pi}\right)}}}{2}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{i l n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t {\color{red}{\sin{\left(u \right)}}}}{4 \pi} + \frac{i n t x}{2}$$
回忆一下 $$$u=\frac{2 \pi x}{l}$$$:
$$- \frac{i l n t \sin{\left({\color{red}{u}} \right)}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t \sin{\left({\color{red}{\left(\frac{2 \pi x}{l}\right)}} \right)}}{4 \pi} + \frac{i n t x}{2}$$
因此,
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = - \frac{i l n t \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{i n t x}{2}$$
化简:
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}$$
加上积分常数:
$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}+C$$
答案
$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi} + C$$$A