$$$x$$$ değişkenine göre $$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx$$$.

Çözüm

Kuvvet indirgeme formülü $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$'i $$$\alpha=\frac{\pi x}{l}$$$ ile uygula:

$${\color{red}{\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)$$$ ile uygula:

$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2}$$

Her terimin integralini alın:

$$\frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}\right)}}}{2}$$

$$$c=i n t$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{\int{i n t d x}}}}{2} = - \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{i n t x}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=i n t$$$ ve $$$f{\left(x \right)} = \cos{\left(\frac{2 \pi x}{l} \right)}$$$ ile uygula:

$$\frac{i n t x}{2} - \frac{{\color{red}{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{{\color{red}{i n t \int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2}$$

$$$u=\frac{2 \pi x}{l}$$$ olsun.

Böylece $$$du=\left(\frac{2 \pi x}{l}\right)^{\prime }dx = \frac{2 \pi}{l} dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{l du}{2 \pi}$$$ elde ederiz.

İntegral şu hale gelir

$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{l}{2 \pi}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:

$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\left(\frac{l \int{\cos{\left(u \right)} d u}}{2 \pi}\right)}}}{2}$$

Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{i l n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t {\color{red}{\sin{\left(u \right)}}}}{4 \pi} + \frac{i n t x}{2}$$

Hatırlayın ki $$$u=\frac{2 \pi x}{l}$$$:

$$- \frac{i l n t \sin{\left({\color{red}{u}} \right)}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t \sin{\left({\color{red}{\left(\frac{2 \pi x}{l}\right)}} \right)}}{4 \pi} + \frac{i n t x}{2}$$

Dolayısıyla,

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = - \frac{i l n t \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{i n t x}{2}$$

Sadeleştirin:

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}$$

İntegrasyon sabitini ekleyin:

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}+C$$

Cevap

$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi} + C$$$A


Please try a new game Rotatly