Integraali $$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx$$$.

Ratkaisu

Sovella potenssin alentamiskaavaa $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ käyttäen $$$\alpha=\frac{\pi x}{l}$$$:

$${\color{red}{\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)$$$:

$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(\frac{2 \pi x}{l} \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2}$$

Integroi termi kerrallaan:

$$\frac{{\color{red}{\int{\left(- i n t \cos{\left(\frac{2 \pi x}{l} \right)} + i n t\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}\right)}}}{2}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=i n t$$$:

$$- \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{\int{i n t d x}}}}{2} = - \frac{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}{2} + \frac{{\color{red}{i n t x}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=i n t$$$ ja $$$f{\left(x \right)} = \cos{\left(\frac{2 \pi x}{l} \right)}$$$:

$$\frac{i n t x}{2} - \frac{{\color{red}{\int{i n t \cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{{\color{red}{i n t \int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2}$$

Olkoon $$$u=\frac{2 \pi x}{l}$$$.

Tällöin $$$du=\left(\frac{2 \pi x}{l}\right)^{\prime }dx = \frac{2 \pi}{l} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{l du}{2 \pi}$$$.

Integraali muuttuu muotoon

$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\cos{\left(\frac{2 \pi x}{l} \right)} d x}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{l}{2 \pi}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{i n t x}{2} - \frac{i n t {\color{red}{\int{\frac{l \cos{\left(u \right)}}{2 \pi} d u}}}}{2} = \frac{i n t x}{2} - \frac{i n t {\color{red}{\left(\frac{l \int{\cos{\left(u \right)} d u}}{2 \pi}\right)}}}{2}$$

Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{i l n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t {\color{red}{\sin{\left(u \right)}}}}{4 \pi} + \frac{i n t x}{2}$$

Muista, että $$$u=\frac{2 \pi x}{l}$$$:

$$- \frac{i l n t \sin{\left({\color{red}{u}} \right)}}{4 \pi} + \frac{i n t x}{2} = - \frac{i l n t \sin{\left({\color{red}{\left(\frac{2 \pi x}{l}\right)}} \right)}}{4 \pi} + \frac{i n t x}{2}$$

Näin ollen,

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = - \frac{i l n t \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{i n t x}{2}$$

Sievennä:

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}$$

Lisää integrointivakio:

$$\int{i n t \sin^{2}{\left(\frac{\pi x}{l} \right)} d x} = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi}+C$$

Vastaus

$$$\int i n t \sin^{2}{\left(\frac{\pi x}{l} \right)}\, dx = \frac{i n t \left(- l \sin{\left(\frac{2 \pi x}{l} \right)} + 2 \pi x\right)}{4 \pi} + C$$$A


Please try a new game Rotatly