$$$7^{- \frac{1}{x}}$$$의 적분
사용자 입력
$$$\int 7^{- \frac{1}{x}}\, dx$$$을(를) 구하시오.
풀이
밑변환:
$${\color{red}{\int{7^{- \frac{1}{x}} d x}}} = {\color{red}{\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}}}$$
적분 $$$\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=e^{- \frac{\ln{\left(7 \right)}}{x}}$$$와 $$$\operatorname{dv}=dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(e^{- \frac{\ln{\left(7 \right)}}{x}}\right)^{\prime }dx=\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x^{2}} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d x}=x$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}}}={\color{red}{\left(e^{- \frac{\ln{\left(7 \right)}}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{\ln{\left(7 \right)}}{x}} - \int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\ln{\left(7 \right)}$$$와 $$$f{\left(x \right)} = \frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x}$$$에 적용하세요:
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - {\color{red}{\int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x} d x}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - {\color{red}{\ln{\left(7 \right)} \int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x} d x}}}$$
$$$u=- \frac{\ln{\left(7 \right)}}{x}$$$라 하자.
그러면 $$$du=\left(- \frac{\ln{\left(7 \right)}}{x}\right)^{\prime }dx = \frac{\ln{\left(7 \right)}}{x^{2}} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{x^{2}} = \frac{du}{\ln{\left(7 \right)}}$$$임을 얻습니다.
따라서,
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x} d x}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$에 적용하세요:
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
이 적분(지수적분)은 닫힌형 표현이 없습니다:
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
다음 $$$u=- \frac{\ln{\left(7 \right)}}{x}$$$을 기억하라:
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left({\color{red}{\left(- \frac{\ln{\left(7 \right)}}{x}\right)}} \right)}$$
따라서,
$$\int{7^{- \frac{1}{x}} d x} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left(- \frac{\ln{\left(7 \right)}}{x} \right)}$$
적분 상수를 추가하세요:
$$\int{7^{- \frac{1}{x}} d x} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left(- \frac{\ln{\left(7 \right)}}{x} \right)}+C$$
정답
$$$\int 7^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{\ln\left(7\right)}{x}} + \ln\left(7\right) \operatorname{Ei}{\left(- \frac{\ln\left(7\right)}{x} \right)}\right) + C$$$A