Intégrale de $$$7^{- \frac{1}{x}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 7^{- \frac{1}{x}}\, dx$$$.
Solution
Changer de base:
$${\color{red}{\int{7^{- \frac{1}{x}} d x}}} = {\color{red}{\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}}}$$
Pour l’intégrale $$$\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=e^{- \frac{\ln{\left(7 \right)}}{x}}$$$ et $$$\operatorname{dv}=dx$$$.
Donc $$$\operatorname{du}=\left(e^{- \frac{\ln{\left(7 \right)}}{x}}\right)^{\prime }dx=\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x^{2}} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d x}=x$$$ (les étapes peuvent être consultées »).
Par conséquent,
$${\color{red}{\int{e^{- \frac{\ln{\left(7 \right)}}{x}} d x}}}={\color{red}{\left(e^{- \frac{\ln{\left(7 \right)}}{x}} \cdot x-\int{x \cdot \frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x e^{- \frac{\ln{\left(7 \right)}}{x}} - \int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\ln{\left(7 \right)}$$$ et $$$f{\left(x \right)} = \frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x}$$$ :
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - {\color{red}{\int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}} \ln{\left(7 \right)}}{x} d x}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - {\color{red}{\ln{\left(7 \right)} \int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x} d x}}}$$
Soit $$$u=- \frac{\ln{\left(7 \right)}}{x}$$$.
Alors $$$du=\left(- \frac{\ln{\left(7 \right)}}{x}\right)^{\prime }dx = \frac{\ln{\left(7 \right)}}{x^{2}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{x^{2}} = \frac{du}{\ln{\left(7 \right)}}$$$.
Ainsi,
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\frac{e^{- \frac{\ln{\left(7 \right)}}{x}}}{x} d x}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$ :
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\int{\left(- \frac{e^{u}}{u}\right)d u}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} - \ln{\left(7 \right)} {\color{red}{\left(- \int{\frac{e^{u}}{u} d u}\right)}}$$
Cette intégrale (Intégrale exponentielle) n’admet pas de forme fermée :
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} {\color{red}{\int{\frac{e^{u}}{u} d u}}} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} {\color{red}{\operatorname{Ei}{\left(u \right)}}}$$
Rappelons que $$$u=- \frac{\ln{\left(7 \right)}}{x}$$$ :
$$x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left({\color{red}{u}} \right)} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left({\color{red}{\left(- \frac{\ln{\left(7 \right)}}{x}\right)}} \right)}$$
Par conséquent,
$$\int{7^{- \frac{1}{x}} d x} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left(- \frac{\ln{\left(7 \right)}}{x} \right)}$$
Ajouter la constante d'intégration :
$$\int{7^{- \frac{1}{x}} d x} = x e^{- \frac{\ln{\left(7 \right)}}{x}} + \ln{\left(7 \right)} \operatorname{Ei}{\left(- \frac{\ln{\left(7 \right)}}{x} \right)}+C$$
Réponse
$$$\int 7^{- \frac{1}{x}}\, dx = \left(x e^{- \frac{\ln\left(7\right)}{x}} + \ln\left(7\right) \operatorname{Ei}{\left(- \frac{\ln\left(7\right)}{x} \right)}\right) + C$$$A