$$$\frac{x}{x^{2} - 1}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{x}{x^{2} - 1}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{x}{x^{2} - 1}\, dx$$$을(를) 구하시오.

풀이

$$$u=x^{2} - 1$$$라 하자.

그러면 $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = \frac{du}{2}$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$${\color{red}{\int{\frac{x}{x^{2} - 1} d x}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

다음 $$$u=x^{2} - 1$$$을 기억하라:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} - 1\right)}}}\right| \right)}}{2}$$

따라서,

$$\int{\frac{x}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x^{2} - 1}\right| \right)}}{2}$$

적분 상수를 추가하세요:

$$\int{\frac{x}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x^{2} - 1}\right| \right)}}{2}+C$$

정답

$$$\int \frac{x}{x^{2} - 1}\, dx = \frac{\ln\left(\left|{x^{2} - 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly