$$$\frac{x}{x^{2} - 1}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{x}{x^{2} - 1}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{x}{x^{2} - 1}\, dx$$$.

Çözüm

$$$u=x^{2} - 1$$$ olsun.

Böylece $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (adımlar » görülebilir) ve $$$x dx = \frac{du}{2}$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$${\color{red}{\int{\frac{x}{x^{2} - 1} d x}}} = {\color{red}{\int{\frac{1}{2 u} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:

$${\color{red}{\int{\frac{1}{2 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Hatırlayın ki $$$u=x^{2} - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} - 1\right)}}}\right| \right)}}{2}$$

Dolayısıyla,

$$\int{\frac{x}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x^{2} - 1}\right| \right)}}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{x}{x^{2} - 1} d x} = \frac{\ln{\left(\left|{x^{2} - 1}\right| \right)}}{2}+C$$

Cevap

$$$\int \frac{x}{x^{2} - 1}\, dx = \frac{\ln\left(\left|{x^{2} - 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly