$$$\ln\left(1 - \phi\right)$$$의 적분
사용자 입력
$$$\int \ln\left(1 - \phi\right)\, d\phi$$$을(를) 구하시오.
풀이
$$$u=1 - \phi$$$라 하자.
그러면 $$$du=\left(1 - \phi\right)^{\prime }d\phi = - d\phi$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$d\phi = - du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\ln{\left(1 - \phi \right)} d \phi}}} = {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \ln{\left(u \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
적분 $$$\int{\ln{\left(u \right)} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$을 사용하십시오.
$$$\operatorname{c}=\ln{\left(u \right)}$$$와 $$$\operatorname{dv}=du$$$라고 하자.
그러면 $$$\operatorname{dc}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d u}=u$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$- {\color{red}{\int{\ln{\left(u \right)} d u}}}=- {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- u \ln{\left(u \right)} + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + {\color{red}{u}}$$
다음 $$$u=1 - \phi$$$을 기억하라:
$${\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = {\color{red}{\left(1 - \phi\right)}} - {\color{red}{\left(1 - \phi\right)}} \ln{\left({\color{red}{\left(1 - \phi\right)}} \right)}$$
따라서,
$$\int{\ln{\left(1 - \phi \right)} d \phi} = - \phi - \left(1 - \phi\right) \ln{\left(1 - \phi \right)} + 1$$
간단히 하시오:
$$\int{\ln{\left(1 - \phi \right)} d \phi} = \left(\phi - 1\right) \left(\ln{\left(1 - \phi \right)} - 1\right)$$
적분 상수를 추가하세요:
$$\int{\ln{\left(1 - \phi \right)} d \phi} = \left(\phi - 1\right) \left(\ln{\left(1 - \phi \right)} - 1\right)+C$$
정답
$$$\int \ln\left(1 - \phi\right)\, d\phi = \left(\phi - 1\right) \left(\ln\left(1 - \phi\right) - 1\right) + C$$$A