Intégrale de $$$\ln\left(1 - \phi\right)$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \ln\left(1 - \phi\right)\, d\phi$$$.
Solution
Soit $$$u=1 - \phi$$$.
Alors $$$du=\left(1 - \phi\right)^{\prime }d\phi = - d\phi$$$ (les étapes peuvent être vues »), et nous obtenons $$$d\phi = - du$$$.
Donc,
$${\color{red}{\int{\ln{\left(1 - \phi \right)} d \phi}}} = {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ :
$${\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
Pour l’intégrale $$$\int{\ln{\left(u \right)} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Soient $$$\operatorname{m}=\ln{\left(u \right)}$$$ et $$$\operatorname{dv}=du$$$.
Donc $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d u}=u$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$- {\color{red}{\int{\ln{\left(u \right)} d u}}}=- {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$- u \ln{\left(u \right)} + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + {\color{red}{u}}$$
Rappelons que $$$u=1 - \phi$$$ :
$${\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = {\color{red}{\left(1 - \phi\right)}} - {\color{red}{\left(1 - \phi\right)}} \ln{\left({\color{red}{\left(1 - \phi\right)}} \right)}$$
Par conséquent,
$$\int{\ln{\left(1 - \phi \right)} d \phi} = - \phi - \left(1 - \phi\right) \ln{\left(1 - \phi \right)} + 1$$
Simplifier:
$$\int{\ln{\left(1 - \phi \right)} d \phi} = \left(\phi - 1\right) \left(\ln{\left(1 - \phi \right)} - 1\right)$$
Ajouter la constante d'intégration :
$$\int{\ln{\left(1 - \phi \right)} d \phi} = \left(\phi - 1\right) \left(\ln{\left(1 - \phi \right)} - 1\right)+C$$
Réponse
$$$\int \ln\left(1 - \phi\right)\, d\phi = \left(\phi - 1\right) \left(\ln\left(1 - \phi\right) - 1\right) + C$$$A