$$$\operatorname{atan}{\left(7 t \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \operatorname{atan}{\left(7 t \right)}\, dt$$$을(를) 구하시오.
풀이
$$$u=7 t$$$라 하자.
그러면 $$$du=\left(7 t\right)^{\prime }dt = 7 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{du}{7}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\operatorname{atan}{\left(7 t \right)} d t}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{7}$$$와 $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$에 적용하세요:
$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{7}\right)}}$$
적분 $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$을 사용하십시오.
$$$\operatorname{\omega}=\operatorname{atan}{\left(u \right)}$$$와 $$$\operatorname{dv}=du$$$라고 하자.
그러면 $$$\operatorname{d\omega}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d u}=u$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{7}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{7}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{7}$$
$$$v=u^{2} + 1$$$라 하자.
그러면 $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$u du = \frac{dv}{2}$$$임을 얻습니다.
따라서,
$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{7}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{14}$$
다음 $$$v=u^{2} + 1$$$을 기억하라:
$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{14}$$
다음 $$$u=7 t$$$을 기억하라:
$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{14} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{7} = - \frac{\ln{\left(1 + {\color{red}{\left(7 t\right)}}^{2} \right)}}{14} + \frac{{\color{red}{\left(7 t\right)}} \operatorname{atan}{\left({\color{red}{\left(7 t\right)}} \right)}}{7}$$
따라서,
$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}$$
적분 상수를 추가하세요:
$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}+C$$
정답
$$$\int \operatorname{atan}{\left(7 t \right)}\, dt = \left(t \operatorname{atan}{\left(7 t \right)} - \frac{\ln\left(49 t^{2} + 1\right)}{14}\right) + C$$$A