Funktion $$$\operatorname{atan}{\left(7 t \right)}$$$ integraali

Laskin löytää funktion $$$\operatorname{atan}{\left(7 t \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \operatorname{atan}{\left(7 t \right)}\, dt$$$.

Ratkaisu

Olkoon $$$u=7 t$$$.

Tällöin $$$du=\left(7 t\right)^{\prime }dt = 7 dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dt = \frac{du}{7}$$$.

Näin ollen,

$${\color{red}{\int{\operatorname{atan}{\left(7 t \right)} d t}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{7}$$$ ja $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{7}\right)}}$$

Integraalin $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.

Olkoon $$$\operatorname{\omega}=\operatorname{atan}{\left(u \right)}$$$ ja $$$\operatorname{dv}=du$$$.

Tällöin $$$\operatorname{d\omega}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d u}=u$$$ (vaiheet ovat nähtävissä »).

Integraali muuttuu muotoon

$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{7}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{7}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{7}$$

Olkoon $$$v=u^{2} + 1$$$.

Tällöin $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$u du = \frac{dv}{2}$$$.

Näin ollen,

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{7}$$

Funktion $$$\frac{1}{v}$$$ integraali on $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{14}$$

Muista, että $$$v=u^{2} + 1$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{14}$$

Muista, että $$$u=7 t$$$:

$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{14} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{7} = - \frac{\ln{\left(1 + {\color{red}{\left(7 t\right)}}^{2} \right)}}{14} + \frac{{\color{red}{\left(7 t\right)}} \operatorname{atan}{\left({\color{red}{\left(7 t\right)}} \right)}}{7}$$

Näin ollen,

$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}$$

Lisää integrointivakio:

$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}+C$$

Vastaus

$$$\int \operatorname{atan}{\left(7 t \right)}\, dt = \left(t \operatorname{atan}{\left(7 t \right)} - \frac{\ln\left(49 t^{2} + 1\right)}{14}\right) + C$$$A


Please try a new game Rotatly