Integral de $$$\operatorname{atan}{\left(7 t \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\operatorname{atan}{\left(7 t \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \operatorname{atan}{\left(7 t \right)}\, dt$$$.

Solución

Sea $$$u=7 t$$$.

Entonces $$$du=\left(7 t\right)^{\prime }dt = 7 dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = \frac{du}{7}$$$.

La integral se convierte en

$${\color{red}{\int{\operatorname{atan}{\left(7 t \right)} d t}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{7}$$$ y $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{7}\right)}}$$

Para la integral $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$, utiliza la integración por partes $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.

Sean $$$\operatorname{\omega}=\operatorname{atan}{\left(u \right)}$$$ y $$$\operatorname{dv}=du$$$.

Entonces $$$\operatorname{d\omega}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d u}=u$$$ (los pasos pueden verse »).

Por lo tanto,

$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{7}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{7}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{7}$$

Sea $$$v=u^{2} + 1$$$.

Entonces $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (los pasos pueden verse »), y obtenemos que $$$u du = \frac{dv}{2}$$$.

La integral se convierte en

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{7} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{7}$$

La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{14}$$

Recordemos que $$$v=u^{2} + 1$$$:

$$\frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{14} = \frac{u \operatorname{atan}{\left(u \right)}}{7} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{14}$$

Recordemos que $$$u=7 t$$$:

$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{14} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{7} = - \frac{\ln{\left(1 + {\color{red}{\left(7 t\right)}}^{2} \right)}}{14} + \frac{{\color{red}{\left(7 t\right)}} \operatorname{atan}{\left({\color{red}{\left(7 t\right)}} \right)}}{7}$$

Por lo tanto,

$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}$$

Añade la constante de integración:

$$\int{\operatorname{atan}{\left(7 t \right)} d t} = t \operatorname{atan}{\left(7 t \right)} - \frac{\ln{\left(49 t^{2} + 1 \right)}}{14}+C$$

Respuesta

$$$\int \operatorname{atan}{\left(7 t \right)}\, dt = \left(t \operatorname{atan}{\left(7 t \right)} - \frac{\ln\left(49 t^{2} + 1\right)}{14}\right) + C$$$A


Please try a new game Rotatly