$$$4 \sqrt{5} x^{\frac{5}{2}}$$$의 적분
사용자 입력
$$$\int 4 \sqrt{5} x^{\frac{5}{2}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4 \sqrt{5}$$$와 $$$f{\left(x \right)} = x^{\frac{5}{2}}$$$에 적용하세요:
$${\color{red}{\int{4 \sqrt{5} x^{\frac{5}{2}} d x}}} = {\color{red}{\left(4 \sqrt{5} \int{x^{\frac{5}{2}} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{5}{2}$$$에 적용합니다:
$$4 \sqrt{5} {\color{red}{\int{x^{\frac{5}{2}} d x}}}=4 \sqrt{5} {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=4 \sqrt{5} {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$
따라서,
$$\int{4 \sqrt{5} x^{\frac{5}{2}} d x} = \frac{8 \sqrt{5} x^{\frac{7}{2}}}{7}$$
적분 상수를 추가하세요:
$$\int{4 \sqrt{5} x^{\frac{5}{2}} d x} = \frac{8 \sqrt{5} x^{\frac{7}{2}}}{7}+C$$
정답
$$$\int 4 \sqrt{5} x^{\frac{5}{2}}\, dx = \frac{8 \sqrt{5} x^{\frac{7}{2}}}{7} + C$$$A