$$$\frac{1}{9 x^{2} - 4}$$$의 적분
사용자 입력
$$$\int \frac{1}{9 x^{2} - 4}\, dx$$$을(를) 구하시오.
풀이
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$${\color{red}{\int{\frac{1}{9 x^{2} - 4} d x}}} = {\color{red}{\int{\left(- \frac{1}{4 \left(3 x + 2\right)} + \frac{1}{4 \left(3 x - 2\right)}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- \frac{1}{4 \left(3 x + 2\right)} + \frac{1}{4 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \int{\frac{1}{4 \left(3 x + 2\right)} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(x \right)} = \frac{1}{3 x + 2}$$$에 적용하세요:
$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - {\color{red}{\int{\frac{1}{4 \left(3 x + 2\right)} d x}}} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{3 x + 2} d x}}{4}\right)}}$$
$$$u=3 x + 2$$$라 하자.
그러면 $$$du=\left(3 x + 2\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 x + 2} d x}}}}{4} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
다음 $$$u=3 x + 2$$$을 기억하라:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x - 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(3 x + 2\right)}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x - 2\right)} d x}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$에 적용하세요:
$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + {\color{red}{\int{\frac{1}{4 \left(3 x - 2\right)} d x}}} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + {\color{red}{\left(\frac{\int{\frac{1}{3 x - 2} d x}}{4}\right)}}$$
$$$u=3 x - 2$$$라 하자.
그러면 $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{4} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
다음 $$$u=3 x - 2$$$을 기억하라:
$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{12}$$
따라서,
$$\int{\frac{1}{9 x^{2} - 4} d x} = \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{9 x^{2} - 4} d x} = \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}+C$$
정답
$$$\int \frac{1}{9 x^{2} - 4}\, dx = \left(\frac{\ln\left(\left|{3 x - 2}\right|\right)}{12} - \frac{\ln\left(\left|{3 x + 2}\right|\right)}{12}\right) + C$$$A