$$$\frac{1}{9 x^{2} - 4}$$$ 的积分

该计算器将求出$$$\frac{1}{9 x^{2} - 4}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{9 x^{2} - 4}\, dx$$$

解答

进行部分分式分解(步骤可见»):

$${\color{red}{\int{\frac{1}{9 x^{2} - 4} d x}}} = {\color{red}{\int{\left(- \frac{1}{4 \left(3 x + 2\right)} + \frac{1}{4 \left(3 x - 2\right)}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(- \frac{1}{4 \left(3 x + 2\right)} + \frac{1}{4 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \int{\frac{1}{4 \left(3 x + 2\right)} d x}\right)}}$$

$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \frac{1}{3 x + 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - {\color{red}{\int{\frac{1}{4 \left(3 x + 2\right)} d x}}} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{3 x + 2} d x}}{4}\right)}}$$

$$$u=3 x + 2$$$

$$$du=\left(3 x + 2\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$

该积分可以改写为

$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 x + 2} d x}}}}{4} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = \int{\frac{1}{4 \left(3 x - 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$

回忆一下 $$$u=3 x + 2$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x - 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(3 x + 2\right)}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x - 2\right)} d x}$$

$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + {\color{red}{\int{\frac{1}{4 \left(3 x - 2\right)} d x}}} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + {\color{red}{\left(\frac{\int{\frac{1}{3 x - 2} d x}}{4}\right)}}$$

$$$u=3 x - 2$$$

$$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$

因此,

$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{4} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$

回忆一下 $$$u=3 x - 2$$$:

$$- \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{12}$$

因此,

$$\int{\frac{1}{9 x^{2} - 4} d x} = \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$

加上积分常数:

$$\int{\frac{1}{9 x^{2} - 4} d x} = \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} - \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}+C$$

答案

$$$\int \frac{1}{9 x^{2} - 4}\, dx = \left(\frac{\ln\left(\left|{3 x - 2}\right|\right)}{12} - \frac{\ln\left(\left|{3 x + 2}\right|\right)}{12}\right) + C$$$A


Please try a new game Rotatly