$$$- x^{5} \left(2 x - 6\right)$$$의 적분
사용자 입력
$$$\int \left(- x^{5} \left(2 x - 6\right)\right)\, dx$$$을(를) 구하시오.
풀이
입력이 다음과 같이 다시 쓰입니다: $$$\int{\left(- x^{5} \left(2 x - 6\right)\right)d x}=\int{x^{5} \left(6 - 2 x\right) d x}$$$.
피적분함수를 단순화하세요.:
$${\color{red}{\int{x^{5} \left(6 - 2 x\right) d x}}} = {\color{red}{\int{2 x^{5} \left(3 - x\right) d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = x^{5} \left(3 - x\right)$$$에 적용하세요:
$${\color{red}{\int{2 x^{5} \left(3 - x\right) d x}}} = {\color{red}{\left(2 \int{x^{5} \left(3 - x\right) d x}\right)}}$$
Expand the expression:
$$2 {\color{red}{\int{x^{5} \left(3 - x\right) d x}}} = 2 {\color{red}{\int{\left(- x^{6} + 3 x^{5}\right)d x}}}$$
각 항별로 적분하십시오:
$$2 {\color{red}{\int{\left(- x^{6} + 3 x^{5}\right)d x}}} = 2 {\color{red}{\left(\int{3 x^{5} d x} - \int{x^{6} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=6$$$에 적용합니다:
$$2 \int{3 x^{5} d x} - 2 {\color{red}{\int{x^{6} d x}}}=2 \int{3 x^{5} d x} - 2 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=2 \int{3 x^{5} d x} - 2 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=3$$$와 $$$f{\left(x \right)} = x^{5}$$$에 적용하세요:
$$- \frac{2 x^{7}}{7} + 2 {\color{red}{\int{3 x^{5} d x}}} = - \frac{2 x^{7}}{7} + 2 {\color{red}{\left(3 \int{x^{5} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=5$$$에 적용합니다:
$$- \frac{2 x^{7}}{7} + 6 {\color{red}{\int{x^{5} d x}}}=- \frac{2 x^{7}}{7} + 6 {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=- \frac{2 x^{7}}{7} + 6 {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$
따라서,
$$\int{x^{5} \left(6 - 2 x\right) d x} = - \frac{2 x^{7}}{7} + x^{6}$$
간단히 하시오:
$$\int{x^{5} \left(6 - 2 x\right) d x} = \frac{x^{6} \left(7 - 2 x\right)}{7}$$
적분 상수를 추가하세요:
$$\int{x^{5} \left(6 - 2 x\right) d x} = \frac{x^{6} \left(7 - 2 x\right)}{7}+C$$
정답
$$$\int \left(- x^{5} \left(2 x - 6\right)\right)\, dx = \frac{x^{6} \left(7 - 2 x\right)}{7} + C$$$A