$$$- x^{5} \left(2 x - 6\right)$$$の積分
入力内容
$$$\int \left(- x^{5} \left(2 x - 6\right)\right)\, dx$$$ を求めよ。
解答
入力は次のように書き換えられます: $$$\int{\left(- x^{5} \left(2 x - 6\right)\right)d x}=\int{x^{5} \left(6 - 2 x\right) d x}$$$。
被積分関数を簡単化する:
$${\color{red}{\int{x^{5} \left(6 - 2 x\right) d x}}} = {\color{red}{\int{2 x^{5} \left(3 - x\right) d x}}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$ と $$$f{\left(x \right)} = x^{5} \left(3 - x\right)$$$ に対して適用する:
$${\color{red}{\int{2 x^{5} \left(3 - x\right) d x}}} = {\color{red}{\left(2 \int{x^{5} \left(3 - x\right) d x}\right)}}$$
Expand the expression:
$$2 {\color{red}{\int{x^{5} \left(3 - x\right) d x}}} = 2 {\color{red}{\int{\left(- x^{6} + 3 x^{5}\right)d x}}}$$
項別に積分せよ:
$$2 {\color{red}{\int{\left(- x^{6} + 3 x^{5}\right)d x}}} = 2 {\color{red}{\left(\int{3 x^{5} d x} - \int{x^{6} d x}\right)}}$$
$$$n=6$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$2 \int{3 x^{5} d x} - 2 {\color{red}{\int{x^{6} d x}}}=2 \int{3 x^{5} d x} - 2 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=2 \int{3 x^{5} d x} - 2 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=3$$$ と $$$f{\left(x \right)} = x^{5}$$$ に対して適用する:
$$- \frac{2 x^{7}}{7} + 2 {\color{red}{\int{3 x^{5} d x}}} = - \frac{2 x^{7}}{7} + 2 {\color{red}{\left(3 \int{x^{5} d x}\right)}}$$
$$$n=5$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$- \frac{2 x^{7}}{7} + 6 {\color{red}{\int{x^{5} d x}}}=- \frac{2 x^{7}}{7} + 6 {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}=- \frac{2 x^{7}}{7} + 6 {\color{red}{\left(\frac{x^{6}}{6}\right)}}$$
したがって、
$$\int{x^{5} \left(6 - 2 x\right) d x} = - \frac{2 x^{7}}{7} + x^{6}$$
簡単化せよ:
$$\int{x^{5} \left(6 - 2 x\right) d x} = \frac{x^{6} \left(7 - 2 x\right)}{7}$$
積分定数を加える:
$$\int{x^{5} \left(6 - 2 x\right) d x} = \frac{x^{6} \left(7 - 2 x\right)}{7}+C$$
解答
$$$\int \left(- x^{5} \left(2 x - 6\right)\right)\, dx = \frac{x^{6} \left(7 - 2 x\right)}{7} + C$$$A