$$$\frac{x^{2}}{1 - x^{\sqrt{2}}}$$$의 적분
사용자 입력
$$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx$$$을(를) 구하시오.
풀이
이 적분은 폐형식으로 표현할 수 없습니다:
$${\color{red}{\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x}}} = {\color{red}{\left(\frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}\right)}}$$
따라서,
$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}$$
간단히 하시오:
$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}+C$$
정답
$$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2} + C$$$A