Integral de $$$\frac{x^{2}}{1 - x^{\sqrt{2}}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{x^{2}}{1 - x^{\sqrt{2}}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx$$$.

Solución

Esta integral no tiene una forma cerrada:

$${\color{red}{\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x}}} = {\color{red}{\left(\frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}\right)}}$$

Por lo tanto,

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}$$

Simplificar:

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}$$

Añade la constante de integración:

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}+C$$

Respuesta

$$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2} + C$$$A


Please try a new game Rotatly