Funktion $$$\frac{x^{2}}{1 - x^{\sqrt{2}}}$$$ integraali

Laskin löytää funktion $$$\frac{x^{2}}{1 - x^{\sqrt{2}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx$$$.

Ratkaisu

Tälle integraalille ei ole olemassa suljettua muotoa:

$${\color{red}{\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x}}} = {\color{red}{\left(\frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}\right)}}$$

Näin ollen,

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{x^{3} {{}_{2}F_{1}\left(\begin{matrix} 1, \frac{3 \sqrt{2}}{2} \\ 1 + \frac{3 \sqrt{2}}{2} \end{matrix}\middle| {x^{\sqrt{2}}} \right)}}{3}$$

Sievennä:

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}$$

Lisää integrointivakio:

$$\int{\frac{x^{2}}{1 - x^{\sqrt{2}}} d x} = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2}+C$$

Vastaus

$$$\int \frac{x^{2}}{1 - x^{\sqrt{2}}}\, dx = \frac{\sqrt{2} x^{3} \Phi\left(x^{\sqrt{2}}, 1, \frac{3 \sqrt{2}}{2}\right)}{2} + C$$$A


Please try a new game Rotatly