$$$x$$$에 대한 $$$\frac{e^{- t^{2} x^{2}}}{t^{2}}$$$의 적분
사용자 입력
$$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{t^{2}}$$$와 $$$f{\left(x \right)} = e^{- t^{2} x^{2}}$$$에 적용하세요:
$${\color{red}{\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x}}} = {\color{red}{\frac{\int{e^{- t^{2} x^{2}} d x}}{t^{2}}}}$$
$$$u=x \left|{t}\right|$$$라 하자.
그러면 $$$du=\left(x \left|{t}\right|\right)^{\prime }dx = \left|{t}\right| dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{\left|{t}\right|}$$$임을 얻습니다.
따라서,
$$\frac{{\color{red}{\int{e^{- t^{2} x^{2}} d x}}}}{t^{2}} = \frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{\left|{t}\right|}$$$와 $$$f{\left(u \right)} = e^{- u^{2}}$$$에 적용하세요:
$$\frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}} = \frac{{\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{t}\right|}}}}{t^{2}}$$
이 적분(오차 함수)은 닫힌형 표현이 없습니다:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{t^{2} \left|{t}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{t^{2} \left|{t}\right|}$$
다음 $$$u=x \left|{t}\right|$$$을 기억하라:
$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 t^{2} \left|{t}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{t}\right|}} \right)}}{2 t^{2} \left|{t}\right|}$$
따라서,
$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}$$
적분 상수를 추가하세요:
$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}+C$$
정답
$$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|} + C$$$A