Integraali $$$\frac{e^{- t^{2} x^{2}}}{t^{2}}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{t^{2}}$$$ ja $$$f{\left(x \right)} = e^{- t^{2} x^{2}}$$$:
$${\color{red}{\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x}}} = {\color{red}{\frac{\int{e^{- t^{2} x^{2}} d x}}{t^{2}}}}$$
Olkoon $$$u=x \left|{t}\right|$$$.
Tällöin $$$du=\left(x \left|{t}\right|\right)^{\prime }dx = \left|{t}\right| dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{\left|{t}\right|}$$$.
Siis,
$$\frac{{\color{red}{\int{e^{- t^{2} x^{2}} d x}}}}{t^{2}} = \frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{\left|{t}\right|}$$$ ja $$$f{\left(u \right)} = e^{- u^{2}}$$$:
$$\frac{{\color{red}{\int{\frac{e^{- u^{2}}}{\left|{t}\right|} d u}}}}{t^{2}} = \frac{{\color{red}{\frac{\int{e^{- u^{2}} d u}}{\left|{t}\right|}}}}{t^{2}}$$
Tällä integraalilla (Virhefunktio) ei ole suljettua muotoa:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{t^{2} \left|{t}\right|} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{t^{2} \left|{t}\right|}$$
Muista, että $$$u=x \left|{t}\right|$$$:
$$\frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2 t^{2} \left|{t}\right|} = \frac{\sqrt{\pi} \operatorname{erf}{\left({\color{red}{x \left|{t}\right|}} \right)}}{2 t^{2} \left|{t}\right|}$$
Näin ollen,
$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}$$
Lisää integrointivakio:
$$\int{\frac{e^{- t^{2} x^{2}}}{t^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|}+C$$
Vastaus
$$$\int \frac{e^{- t^{2} x^{2}}}{t^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erf}{\left(x \left|{t}\right| \right)}}{2 t^{2} \left|{t}\right|} + C$$$A